Kind和Containerlab构建CiliumBGP环境
构建 Kubernetes 集群示例
通过 Kind 启动 Cilium BGP 集群
kind 集群
准备一个 Kind 的配置文件,创建一个 4 节点的 Kubernetes 集群
# cluster.yaml
kind: Cluster
name: clab-bgp-cplane-demo
apiVersion: kind.x-k8s.io/v1alpha4
networking:
disableDefaultCNI: true # 禁用默认 CNI
podSubnet: "10.1.0.0/16" # Pod CIDR
nodes:
- role: control-plane # 节点角色
kubeadmConfigPatches:
- |
kind: InitConfiguration
nodeRegistration:
kubeletExtraArgs:
node-ip: 10.0.1.2 # 节点 IP
node-labels: "rack=rack0" # 节点标签
- role: worker
kubeadmConfigPatches:
- |
kind: JoinConfiguration
nodeRegistration:
kubeletExtraArgs:
node-ip: 10.0.2.2
node-labels: "rack=rack0"
- role: worker
kubeadmConfigPatches:
- |
kind: JoinConfiguration
nodeRegistration:
kubeletExtraArgs:
node-ip: 10.0.3.2
node-labels: "rack=rack1"
- role: worker
kubeadmConfigPatches:
- |
kind: JoinConfiguration
nodeRegistration:
kubeletExtraArgs:
node-ip: 10.0.4.2
node-labels: "rack=rack1"
执行以下命令,通过 Kind 创建 Kubernetes 集群
Containerlab 构建网络环境
定义 Containerlab 的配置文件,创建网络基础设施并连接 Kind 创建的 Kubernetes 集群:
- router0, tor0, tor1 作为 Kubernetes 集群外部的网络设备,在 exec 参数中设置网络接口信息以及 BGP 配置。router0 与 tor0, tor1 建立 BGP 邻居,tor0 与 server0, server1, router0 建立 BGP 邻居,tor1 与 server2, server3, router0 建立 BGP 邻居
- 设置
network-mode: container:<容器名>
可以让 Containerlab 共享 Containerlab 之外启动的容器的网络命名空间,设置 server0, server1, server2, server3 容器分别连接到通过 Kind 创建的 Kubernetes 集群的 4 个 Node 上
# topo.yaml
name: bgp-cplane-demo
topology:
kinds:
linux:
cmd: bash
nodes:
router0:
kind: linux
image: frrouting/frr:v8.2.2
labels:
app: frr
exec:
- iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
- ip addr add 10.0.0.0/32 dev lo
- ip route add blackhole 10.0.0.0/8
- touch /etc/frr/vtysh.conf
- sed -i -e 's/bgpd=no/bgpd=yes/g' /etc/frr/daemons
- usr/lib/frr/frrinit.sh start
- >-
vtysh -c 'conf t'
-c 'router bgp 65000'
-c ' bgp router-id 10.0.0.0'
-c ' no bgp ebgp-requires-policy'
-c ' neighbor ROUTERS peer-group'
-c ' neighbor ROUTERS remote-as external'
-c ' neighbor ROUTERS default-originate'
-c ' neighbor net0 interface peer-group ROUTERS'
-c ' neighbor net1 interface peer-group ROUTERS'
-c ' address-family ipv4 unicast'
-c ' redistribute connected'
-c ' exit-address-family'
-c '!'
tor0:
kind: linux
image: frrouting/frr:v8.2.2
labels:
app: frr
exec:
- ip link del eth0
- ip addr add 10.0.0.1/32 dev lo
- ip addr add 10.0.1.1/24 dev net1
- ip addr add 10.0.2.1/24 dev net2
- touch /etc/frr/vtysh.conf
- sed -i -e 's/bgpd=no/bgpd=yes/g' /etc/frr/daemons
- /usr/lib/frr/frrinit.sh start
- >-
vtysh -c 'conf t'
-c 'frr defaults datacenter'
-c 'router bgp 65010'
-c ' bgp router-id 10.0.0.1'
-c ' no bgp ebgp-requires-policy'
-c ' neighbor ROUTERS peer-group'
-c ' neighbor ROUTERS remote-as external'
-c ' neighbor SERVERS peer-group'
-c ' neighbor SERVERS remote-as internal'
-c ' neighbor net0 interface peer-group ROUTERS'
-c ' neighbor 10.0.1.2 peer-group SERVERS'
-c ' neighbor 10.0.2.2 peer-group SERVERS'
-c ' address-family ipv4 unicast'
-c ' redistribute connected'
-c ' exit-address-family'
-c '!'
tor1:
kind: linux
image: frrouting/frr:v8.2.2
labels:
app: frr
exec:
- ip link del eth0
- ip addr add 10.0.0.2/32 dev lo
- ip addr add 10.0.3.1/24 dev net1
- ip addr add 10.0.4.1/24 dev net2
- touch /etc/frr/vtysh.conf
- sed -i -e 's/bgpd=no/bgpd=yes/g' /etc/frr/daemons
- /usr/lib/frr/frrinit.sh start
- >-
vtysh -c 'conf t'
-c 'frr defaults datacenter'
-c 'router bgp 65011'
-c ' bgp router-id 10.0.0.2'
-c ' no bgp ebgp-requires-policy'
-c ' neighbor ROUTERS peer-group'
-c ' neighbor ROUTERS remote-as external'
-c ' neighbor SERVERS peer-group'
-c ' neighbor SERVERS remote-as internal'
-c ' neighbor net0 interface peer-group ROUTERS'
-c ' neighbor 10.0.3.2 peer-group SERVERS'
-c ' neighbor 10.0.4.2 peer-group SERVERS'
-c ' address-family ipv4 unicast'
-c ' redistribute connected'
-c ' exit-address-family'
-c '!'
server0:
kind: linux
image: nicolaka/netshoot:latest
network-mode: container:control-plane
exec:
- ip addr add 10.0.1.2/24 dev net0
- ip route replace default via 10.0.1.1
server1:
kind: linux
image: nicolaka/netshoot:latest
network-mode: container:worker
exec:
- ip addr add 10.0.2.2/24 dev net0
- ip route replace default via 10.0.2.1
server2:
kind: linux
image: nicolaka/netshoot:latest
network-mode: container:worker2
exec:
- ip addr add 10.0.3.2/24 dev net0
- ip route replace default via 10.0.3.1
server3:
kind: linux
image: nicolaka/netshoot:latest
network-mode: container:worker3
exec:
- ip addr add 10.0.4.2/24 dev net0
- ip route replace default via 10.0.4.1
links:
- endpoints: ["router0:net0", "tor0:net0"]
- endpoints: ["router0:net1", "tor1:net0"]
- endpoints: ["tor0:net1", "server0:net0"]
- endpoints: ["tor0:net2", "server1:net0"]
- endpoints: ["tor1:net1", "server2:net0"]
- endpoints: ["tor1:net2", "server3:net0"]
执行以下命令,创建网络环境
创建成功后输出
创建完的拓扑如下所示,当前只有 tor0, tor1 和 router0 设备之间建立了 BGP 连接,由于尚未通过 CiliumBGPPeeringPolicy 设置 Kubernetes 集群的 BGP 配置,因此 tor0, tor1 与 Kubernetes Node 的 BGP 连接还没有建立
分别执行以下命令,可以查看 tor0, tor1, router0 这 3 个网络设备当前的 BGP 邻居建立情况
docker exec -it clab-bgp-cplane-demo-tor0 vtysh -c "show bgp ipv4 summary wide"
docker exec -it clab-bgp-cplane-demo-tor1 vtysh -c "show bgp ipv4 summary wide"
docker exec -it clab-bgp-cplane-demo-router0 vtysh -c "show bgp ipv4 summary wide"
执行以下命令,查看 router0 设备现在学到的 BGP 路由条目
Containerlab 提供 graph
命令生成网络拓扑,在浏览器输入 http://<宿主机 IP>:50080
可以查看 Containerlab 生成的拓扑图
安装 Cilium
在 values.yaml 配置文件中设置我们需要调整的 Cilium 配置参数
# values.yaml
tunnel: disabled
ipam:
mode: kubernetes
ipv4NativeRoutingCIDR: 10.0.0.0/8
# 开启 BGP 功能支持,等同于命令行执行 --enable-bgp-control-plane=true
bgpControlPlane:
enabled: true
k8s:
requireIPv4PodCIDR: true
image:
useDigest: false
operator:
image:
useDigest: false
执行以下命令,安装 Cilium 1.12 版本,开启 BGP 功能支持
# helm repo add cilium https://helm.cilium.io/
helm pull \
--repo https://helm.cilium.io \
cilium \
--version 1.14.3
helm upgrade \
--install \
-n kube-system --create-namespace \
-f ./values.yaml \
cilium \
"./cilium-1.14.3.tgz"
如遇无法拉取镜像,可手动执行
ctr -n moby image export --platform amd64 cilium-image.tar quay.io/cilium/cilium:v1.14.3 ctr -n moby image export --platform amd64 cilium-operator-image.tar quay.io/cilium/operator-generic:v1.14.3 docker cp cilium-image.tar clab-bgp-cplane-demo-control-plane:/root/cilium-image.tar docker cp cilium-image.tar clab-bgp-cplane-demo-worker:/root/cilium-image.tar docker cp cilium-image.tar clab-bgp-cplane-demo-worker2:/root/cilium-image.tar docker cp cilium-image.tar clab-bgp-cplane-demo-worker3:/root/cilium-image.tar docker cp cilium-operator-image.tar clab-bgp-cplane-demo-control-plane:/root/cilium-operator-image.tar docker cp cilium-operator-image.tar clab-bgp-cplane-demo-worker:/root/cilium-operator-image.tar docker cp cilium-operator-image.tar clab-bgp-cplane-demo-worker2:/root/cilium-operator-image.tar docker cp cilium-operator-image.tar clab-bgp-cplane-demo-worker3:/root/cilium-operator-image.tar docker exec -it clab-bgp-cplane-demo-control-plane ctr -n k8s.io image import /root/cilium-operator-image.tar docker exec -it clab-bgp-cplane-demo-control-plane ctr -n k8s.io image import /root/cilium-image.tar docker exec -it clab-bgp-cplane-demo-worker ctr -n k8s.io image import /root/cilium-operator-image.tar docker exec -it clab-bgp-cplane-demo-worker ctr -n k8s.io image import /root/cilium-image.tar docker exec -it clab-bgp-cplane-demo-worker2 ctr -n k8s.io image import /root/cilium-operator-image.tar docker exec -it clab-bgp-cplane-demo-worker2 ctr -n k8s.io image import /root/cilium-image.tar docker exec -it clab-bgp-cplane-demo-worker3 ctr -n k8s.io image import /root/cilium-operator-image.tar docker exec -it clab-bgp-cplane-demo-worker3 ctr -n k8s.io image import /root/cilium-image.tar
等待所有 Cilium Pod 启动完毕后,再次查看 Kubernetes Node 状态,可以看到所有 Node 都已经处于 Ready 状态
NAME STATUS ROLES AGE VERSION
clab-bgp-cplane-demo-control-plane Ready control-plane 18h v1.27.3
clab-bgp-cplane-demo-worker Ready <none> 18h v1.27.3
clab-bgp-cplane-demo-worker2 Ready <none> 18h v1.27.3
clab-bgp-cplane-demo-worker3 Ready <none> 18h v1.27.3
配置 BGP
接下来分别为 rack0 和 rack1 两个机架上 Kubernetes Node 配置 CiliumBGPPeeringPolicy。rack0 和 rack1 分别对应 Node 的 label
rack0 的 Node 与 tor0 建立 BGP 邻居,rack1 的 Node 与 tor1 建立 BGP 邻居,并自动宣告 Pod CIDR 给 BGP 邻居
---
apiVersion: "cilium.io/v2alpha1"
kind: CiliumBGPPeeringPolicy
metadata:
name: rack0
spec:
nodeSelector:
matchLabels:
rack: rack0
virtualRouters:
- localASN: 65010
exportPodCIDR: true # 自动宣告 Pod CIDR
neighbors:
- peerAddress: "10.0.0.1/32" # tor0 的 IP 地址
peerASN: 65010
---
apiVersion: "cilium.io/v2alpha1"
kind: CiliumBGPPeeringPolicy
metadata:
name: rack1
spec:
nodeSelector:
matchLabels:
rack: rack1
virtualRouters:
- localASN: 65011
exportPodCIDR: true
neighbors:
- peerAddress: "10.0.0.2/32" # tor1 的 IP 地址
peerASN: 65011
创建完的拓扑如下所示,现在 tor0 和 tor1 也已经和 Kubernetes Node 建立了 BGP 邻居
分别执行以下命令,可以查看 tor0, tor1, router0 3 个网络设备当前的 BGP 邻居建立情况
docker exec -it clab-bgp-cplane-demo-tor0 vtysh -c "show bgp ipv4 summary wide"
docker exec -it clab-bgp-cplane-demo-tor1 vtysh -c "show bgp ipv4 summary wide"
docker exec -it clab-bgp-cplane-demo-router0 vtysh -c "show bgp ipv4 summary wide"
执行以下命令,查看 router0 设备现在学到的 BGP 路由条目。
当前总共有 12 条路由条目,其中多出来的 4 条路由是从 Kubernetes 4 个 Node 学到的 10.1.x.0/24 网段的路由
验证测试
分别在 rack0 和 rack1 所在的节点上创建 1 个 Pod 用于测试网络的连通性
---
apiVersion: v1
kind: Pod
metadata:
labels:
run: nettool-1
name: nettool-1
spec:
containers:
- image: docker.io/nicolaka/netshoot:v0.9
name: nettool-1
command:
- /bin/bash
args:
- -c
- sleep 100d
nodeSelector:
rack: rack0
---
apiVersion: v1
kind: Pod
metadata:
labels:
run: nettool-2
name: nettool-2
spec:
containers:
- image: docker.io/nicolaka/netshoot:v0.9
name: nettool-2
command:
- /bin/bash
args:
- -c
- sleep 100d
nodeSelector:
rack: rack1
查看 Pod 的 IP 地址
nettool-1 Pod 位于 clab-bgp-cplane-demo-worker(server1, rack0)上,IP 地址是 10.1.2.185;nettool-2 Pod 位于 clab-bgp-cplane-demo-worker3(server3, rack1) 上,IP 地址是 10.1.3.56
执行以下命令,在 nettool-1 Pod 中尝试 ping nettool-2 Pod
可以看到 nettool-1 Pod 能够正常访问 nettool-2 Pod
接下来使用 traceroute 命令观察网络数据包的走向。
数据包从 nettool-1 Pod 发出,依次经过了:
- (1)server1 的 cilium_host 接口:Cilium 网络中 Pod 的默认路由指向了本机的 cilium_host。cilium_host 和cilium_net 是一对 veth pair 设备。Cilium 通过 hardcode ARP 表,强制将 Pod 流量的下一跳劫持到 veth pair 的主机端
- (2)tor0 的 net2 接口
- (3)router0 的 lo0 接口:tor0, tor1 和 router0 3 个网络设备间通过本地环回口 lo0 建立 BGP 邻居,这样做可以在有多条物理链路备份的情况下提升 BGP 邻居的稳健性,不会因为某个物理接口故障时而影响到邻居关系
- (4)tor1 的 lo0 接口
- (5)server3 的 net0 接口
清理环境
执行以下命令,清理 Containerlab 和 Kind 创建的环境